If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+114x-30=0
a = 18; b = 114; c = -30;
Δ = b2-4ac
Δ = 1142-4·18·(-30)
Δ = 15156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15156}=\sqrt{36*421}=\sqrt{36}*\sqrt{421}=6\sqrt{421}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(114)-6\sqrt{421}}{2*18}=\frac{-114-6\sqrt{421}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(114)+6\sqrt{421}}{2*18}=\frac{-114+6\sqrt{421}}{36} $
| 3−5w=28 | | q+666/(-2)=-4 | | -4(h+2)=4 | | -11x+4=-2(4x-5) | | 6×+4×-1=2(5x+4) | | 9+7w=7w+6 | | 4=-0.2x+3x | | 4h+29=93 | | 4.5+a=8 | | 4d-5+8d=18 | | -p+6p=4+-6p | | -15h=-225 | | 2/3x^2+5=18 | | R=5t-27 | | 976=17d+41 | | w/6+17=22 | | n+285/20=27 | | 6x-9-3/4x=-x-5/2(-4x+4) | | 5(x−10)=35 | | -12=m/4 | | (11x+4)=75 | | 2q=–1+3q | | 23=-6+4(h+3) | | 120=200+50x | | 3x+5x+4x=128 | | 2p−9=p | | -3(4x+3)-10(3x-12)=69 | | (6x-1)=(11x+4) | | -12=m-14 | | z-764/(-23)=(-6) | | 9(4s-7)=-24+8s | | 3q+4=6q+3 |